Designer protein 'blocks all known strains of HIV'
HIV / AIDS Immune System / Vaccines Infectious Diseases /
Bacteria / Viruses Sexual Health / STDs add your opinionemailMNT
featuredAcademic journal
MNT Knowledge Center
A novel drug candidate against HIV has been created by a
joint team led by researchers at The Scripps Research Institute in Jupiter, FL.
The scientists consider it to be so potent and effective that it could form the
basis of a vaccine alternative.
drugs and syringe
The scientists designed a protein that simultaneously binds
to two sites on the surface of the virus, which blocks it from entering a host
cell.
"Our compound is the broadest and most potent entry
inhibitor described so far," says Michael Farzan, a Scripps Research
Institute professor who led the effort.
"Unlike antibodies, which fail to neutralize a large
fraction of HIV-1 strains," continues Farzan, "our protein has been
effective against all strains tested, raising the possibility it could offer an
effective HIV vaccine alternative."
Farzan claims that the project is the culmination of more
than a decade's work on the biochemistry of how HIV enters cells.
The results of the study, which are published in the journal
Nature, demonstrate how the new drug candidate blocked every strain of HIV-1,
HIV-2 and SIV (simian immunodeficiency virus), including the variants that are
most difficult to block.
The new drug was also found to protect against doses of the
virus higher than those that normally occur in human transmission for at least
8 months after injection.
New protein was engineered following previous research on
the CCR5 co-receptor
When a cell is infected by HIV, it inserts its own
single-stranded RNA into the host cell. This insert of genetic code allows the
virus to transform the cell into a "manufacturing site" for HIV.
However, the Scripps researchers had previously investigated
a co-receptor - CCR5 - that could be used to prevent infection by manipulating
related proteins. CCR5 is the first "anchor point" on the surface of
a cell that HIV binds to before it can penetrate the cell.
"When we did our original work on CCR5, people thought
it was interesting, but no one saw the therapeutic potential," says
Farzan. "That potential is starting to be realized."
Using the CCR5 work as a point of departure, the scientists
designed a protein that mimics the receptor and simultaneously binds to two
sites on the surface of the virus, which prevents it from entering a host cell.
Study first author Matthew Gardner explains how the protein
prevents the virus from penetrating cells:
"When antibodies try to mimic the receptor, they touch
a lot of other parts of the viral envelope that HIV can change with ease. We've
developed a direct mimic of the receptors without providing many avenues that
the virus can use to escape, so we catch every virus thus far."
A delivery mechanism for the drug candidate was designed
using an engineered adeno-associated virus. This is a small, relatively
harmless virus that does not cause disease. The adeno-associated virus turns
cells into manufacturing sites that churn out enough of the new protective
protein to potentially last for decades.
The data published by the team shows that the new drug
candidate binds more strongly to the HIV-1 envelope than the best neutralizing
antibodies currently known to work against the virus. Although it will be years
before the protein can be tested in humans, it has been successful against SIV
in a macaque model.
Recently, we looked at news that a recombinant strain of HIV
exhibiting unprecedented aggression has been identified in Cuba.
Scientists researching this new HIV strain found that, after
binding to CCR5, the virus moves to the next co-receptor - CXCR4 - much more
quickly than other HIV strains. The move of the virus to CXCR4 is typically
associated with onset of AIDS symptoms.
While this transition from CCR5 to CXCR4 is normally very
difficult, the recombinant HIV variant was found to contain a protease that
makes this transition easier to occur and also enables the virus to replicate
in greater numbers than usual.
No comments:
Post a Comment